Partitions of $N-1$ Schrödinger term(s) for partition 1 1 1 1 $〈VPVPVPVPV〉$ 2 1 1 $-〈V〉〈V{P}^{2}VPVPV〉$ ; 1 2 1 $-〈V〉〈VPV{P}^{2}VPV〉$ ; 1 1 2 $-〈V〉〈VPVPV{P}^{2}V〉$ 2 2 ${\left(〈V〉\right)}^{2}〈V{P}^{2}V{P}^{2}V〉$ 3 1 $-〈VPV〉〈V{P}^{2}VPV〉$ ${\left(〈V〉\right)}^{2}〈VPV{P}^{3}V〉$ 1 3 $-〈VPV〉〈VPV{P}^{2}V〉$ ${\left(〈V〉\right)}^{2}〈VPV{P}^{3}V〉$ 4 $\left[-〈VPVPV〉+〈V〉〈V{P}^{2}V〉\right]×〈V{P}^{2}V〉$ ; $〈V〉〈VPV〉〈V{P}^{3}V〉$ ; $〈VPV〉〈V〉〈V{P}^{3}V〉$ ; $-{\left(〈V〉\right)}^{3}〈V{P}^{4}V〉$ ${S}_{5}={S}_{1}^{4}+3{S}_{2}{S}_{1}^{2}+{S}_{2}^{2}+2{S}_{1}{S}_{3}+{S}_{4}=1+3+1+4+5=14$ ; $\begin{array}{c}\Delta {E}_{5}=〈VPVPVPVPV〉-\Delta {E}_{1}〈V{P}^{2}VPVPV〉-\Delta {E}_{1}〈VPV{P}^{2}VPV〉\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}-\Delta {E}_{1}〈VPVPV{P}^{2}V〉+{\left(\Delta {E}_{1}\right)}^{2}〈V{P}^{2}V{P}^{2}V〉-\Delta {E}_{2}〈V{P}^{2}VPV〉\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}+{\left(\Delta {E}_{1}\right)}^{2}〈V{P}^{3}VPV〉-\Delta {E}_{2}〈VPV{P}^{2}V〉+{\left(\Delta {E}_{1}\right)}^{2}〈VPV{P}^{3}V〉\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}-\Delta {E}_{3}〈V{P}^{2}V〉+2\text{ }\Delta {E}_{1}\Delta {E}_{2}〈V{P}^{3}V〉-{\left(\Delta {E}_{1}\right)}^{3}〈V{P}^{4}V〉\end{array}$