Image length value Denoted by image 2 ${j}_{1}=\text{1},{j}_{2}=\cdots ={j}_{n-2}={j}_{n}=\text{0}$ ${j}_{\text{1},\text{0},\text{0},\cdots ,\text{0}}$ ${\lambda }_{1\text{\hspace{0.17em}}n-1}{x}_{1}{x}_{n-1}$ ${j}_{2}=\text{1},{j}_{1}=\cdots ={j}_{n-2}={j}_{n}=\text{0}$ ${j}_{\text{0},\text{1},\text{0},\cdots ,\text{0}}$ ${\lambda }_{2\text{\hspace{0.17em}}n-1}{x}_{2}{x}_{n-1}$ $\cdots$ $\cdots$ $\cdots$ ${j}_{n}=\text{1},{j}_{1}=\cdots ={j}_{n\text{-}2}=\text{0}$ ${j}_{\text{0},\text{0},\cdots ,\text{1},\text{0}}$ ${\lambda }_{n\text{\hspace{0.17em}}n-1}{x}_{n-1}{x}_{n}$ 3 ${j}_{1}={j}_{2}=1,{j}_{3}=\cdots ={j}_{n}=0$ ${j}_{\text{1},\text{1},\text{0},\cdots ,\text{0}}$ $\left({\lambda }_{\text{1}n-1}+{\lambda }_{\text{2}n-1}\right){x}_{1}{x}_{\text{2}}{x}_{n-1}$ ${j}_{1}={j}_{2}=1,{j}_{3}=\cdots ={j}_{n}=0$ ${j}_{\text{1},\text{0},\text{1},\cdots ,\text{0}}$ $\left({\lambda }_{\text{1}n-1}+{\lambda }_{\text{3}n-1}\right){x}_{1}{x}_{\text{3}}{x}_{n-1}$ $\cdots$ $\cdots$ $\cdots$ ${j}_{n-\text{2}}={j}_{n}=\text{1},{j}_{1}=\cdots ={j}_{n-\text{3}}=\text{0}$ ${j}_{\text{0},\text{0},\cdots ,\text{1},\text{1}}$ $\left({\lambda }_{n-2\text{\hspace{0.17em}}n-1\text{\hspace{0.17em}}}+{\lambda }_{n\text{\hspace{0.17em}}n-1}\right){x}_{n-2}{x}_{n-1}{x}_{n}$ $\cdots$ $n-\text{1}$ ${j}_{1}=0,{j}_{2}={j}_{3}=\cdots ={j}_{n}=1$ ${j}_{0,1,1,\cdots ,1}$ $\left({\lambda }_{2n-\text{1}}+\cdots +{\lambda }_{n\text{\hspace{0.17em}}n-1}\right){\stackrel{^}{x}}_{1}{x}_{2}\cdots {x}_{n-1}{x}_{n}$ ${j}_{\text{2}}=0,{j}_{\text{1}}={j}_{3}=\cdots ={j}_{n}=1$ ${j}_{1,0,1,\cdots ,1}$ $\left({\lambda }_{\text{1}n-\text{1}}+\cdots +{\lambda }_{n\text{\hspace{0.17em}}n-1}\right){x}_{\text{1}}{\stackrel{^}{x}}_{\text{2}}\cdots {x}_{n-1}{x}_{n}$ $\cdots$ $\cdots$ $\cdots$ ${j}_{n}=0,{j}_{1}={j}_{2}=\cdots ={j}_{n-2}=1$ ${j}_{1,1,1,\cdots ,0}$ $\left({\lambda }_{\text{1}n-\text{1}}+\cdots +{\lambda }_{n-\text{2}\text{\hspace{0.17em}}n-1}\right){x}_{\text{1}}{x}_{\text{2}}\cdots {x}_{n-1}{\stackrel{^}{x}}_{n}$ n ${j}_{1}={j}_{2}=\cdots ={j}_{n-2}={j}_{n}=1$ ${j}_{1,1,\cdots ,1,\text{1}}$ $\left({\lambda }_{\text{1}\text{\hspace{0.17em}}n-1}+\cdots +{\lambda }_{n\text{\hspace{0.17em}}n-\text{1}}\right){x}_{\text{1}}\cdots {x}_{n}$