S No.

Relaxation function

i ( t ) , t > 0 t x 0 + i y

Rate distribution function

H λ ( λ ) , λ > 0

H λ ( λ ) = L 1 { i ( t ) }

1

i ( t ) = A : Constant function

H λ ( λ ) = A ( δ ( λ ) )

2

i ( t ) = t 1

H λ ( λ ) = 1 , λ > 0

3

i ( t ) = t n

H λ ( λ ) = 1 ( n 1 ) ! λ n 1

4

i ( t ) = ( t + a ) 1

H λ ( λ ) = e a λ

5

i ( t ) = ( t + a ) n

H λ ( λ ) = 1 ( n 1 ) ! λ n 1 e a λ

6

i ( t ) = a t 1 ( t + a ) 1

H λ ( λ ) = 1 e a λ

7

i ( t ) = ( t + a ) 1 ( t + b ) 1

H λ ( λ ) = 1 b a ( e a λ e b λ )

8

i ( t ) = e λ 0 t

H λ ( λ ) = δ ( λ λ 0 )

9

i ( t ) = t ( t 2 + a ) 1

H λ ( λ ) = cos ( λ a )

10

a ( t 2 + a ) 1

H λ ( λ ) = sin ( λ a )

11

i ( t ) = a ( ( t + b ) 2 + a ) 1

H λ ( λ ) = e b λ sin ( λ a )

12

i ( t ) = e ( t / τ 0 ) β

H λ ( λ ) = τ 0 π 0 ( e ( u β cos ( β π / 2 ) ) cos ( λ τ 0 u u β sin ( β π 2 ) ) ) d u u = y / τ 0

13

i ( t ) = ( 1 + ( 1 β ) ( t τ 0 ) ) 1 / ( 1 β )

H λ ( λ ) = τ 0 π ( 1 β ) 0 ( d u ) ( 1 + u 2 ) 1 / ( 2 ( 1 β ) ) cos ( λ τ 0 u tan 1 u 1 β ) u = ( 1 β ) y / τ 0

14

i ( t ) = ( 1 + ( t τ 0 ) α ) 1 ; 0 < α < 1

H λ ( λ ) = τ 0 π 0 d u ( ( u α cos ( α π 2 ) + 1 ) cos τ 0 u λ + ( u α sin ( α π 2 ) ) sin τ 0 u λ u 2 α + 2 u α cos ( α π 2 ) + 1 ) u = y / τ 0

15

i ( t ) = E α ( ξ ) , ξ = t / τ E α ( ξ ) = k = 0 ( 1 ) k Γ ( α k + 1 ) ξ k

H λ ( λ ) = 2 π 0 E 2 α ( y 2 ) cos ( λ y ) d y

16

i ( t ) = E 1 / 2 ( t / τ 0 )

H λ ( λ ) = 1 π e ( λ 2 / 4 )