(Ä-operation) in (Fm, FΔm) representations
Å-operation in (Fm, FΔm) representations
1) F m ( a i ⊗ a j ) = 〈 m ( a i , a j ) 〉 = 〈 m ( a i ) , m ( a j ) 〉
F m ( a i ⊗ a i ) = F m ( a i ) = m ( a i )
1) F m ( a i ⊕ a j ) = F m ( a i ) + F m ( a j ) = m ( a i ) + m ( a j )
F m ( a i ⊕ a i ) = F m ( a i ) + F m ( a i ) = m ( a i ) + m ( a i ) = 2 m ( a i )
2) F Δ m ( a i ⊗ a j ) = 0
F Δ m ( a i ⊗ a j ) ⊕ ≠ 0
with ( a i ⊗ a j ) ⊕ = ( a i ⊗ a j ) ⊕ a k
2) F Δ m ( a ⊕ b ⊕ c ) = F Δ m ( a ) + F Δ m ( b ) + F Δ m ( c ) + F Δ m ( a ⊕ _ b ) a b + F Δ m ( a ⊕ _ c ) a c + F Δ m ( b ⊕ _ c ) b c
3) F Δ m ( a i ⊗ a j ) ⊕ = F Δ m ( a i )
F Δ m ( ( a i ⊗ a j ) ⊕ a k ) = F Δ m ( ( a i ) ⊕ a k )
3) F Δ m [ ( a i ⊕ a j ) ⊕ a k ] = F Δ m [ ( a i ⊕ a k ) ⊕ ( a j ⊕ a k ) ]