Parameter Equation Reference Shale Volume (Vsh) Using Gamma Ray Log ${I}_{GR}=\frac{G{R}_{\mathrm{log}}-G{R}_{\mathrm{min}}}{G{R}_{\mathrm{max}}-G{R}_{\mathrm{min}}}$ ${V}_{sh}=0.083\left({2}^{3.7\ast {I}_{GR}}-1\right)$ Bassiouni, 1994 Shale Volume (Vsh) Using Resistivity Log $Z=\frac{{R}_{clay}}{{R}_{t}}×\frac{\left({R}_{clean}-{R}_{t}\right)}{\left({R}_{clean}-{R}_{clay}\right)}$ For Rt greater than 2*Rclay then ${V}_{shRes}=0.5×{\left(2×Z\right)}^{0.67×\left(z+1\right)}$ Otherwise, ${V}_{shRes}=Z$ Schlumberger, 2007 Density Porosity ( ${\varphi }_{Dcorr}$ ) ${\varphi }_{Dcorr}=\left(\frac{{\rho }_{ma}-{\rho }_{b}}{{\rho }_{ma}-{\rho }_{f}}\right)-Vsh\left(\frac{{\rho }_{ma}-{\rho }_{sh}}{{\rho }_{ma}-{\rho }_{f}}\right)$ Dresser, 1975 Neutron Porosity ( ${\varphi }_{Ncorr}$ ) ${\varphi }_{Ncorr}={\varphi }_{\text{N}}-\left[\left(\frac{{\varphi }_{\text{Nsh}}}{0.45}\right)×0.30×{V}_{sh}\right]$ Dresser, 1975 Average Porosity ( ${\varphi }_{N-D}$ ) ${\varphi }_{N-D}=\sqrt{\frac{{\varphi }_{{}_{Ncorr}}^{2}+{\varphi }_{Dcorr}^{2}}{2.0}}$ Salley, 1998; Asqith & Krygowski, 2004 Water Saturation (Sw) (Poupon-Leveaux) $\frac{1}{\sqrt{{R}_{t}}}=\left(\sqrt{\frac{{\varphi }^{m}}{a×{R}_{w}}}+\frac{{V}_{sh}{}^{\left(1-\frac{{V}_{sh}}{2}\right)}}{\sqrt{{R}_{sh}}}\right)×{S}_{{}_{w}}^{{}^{\frac{n}{2}}}$ Schlumberger, 2007 Hydrocarbon Saturation (Sh) ${S}_{h}=1-{S}_{W}$ Bassiouni, 1994 Residual Hydrocarbon Saturation (Shr) ${S}_{xo}=\sqrt{\frac{F\ast {R}_{mf}}{{R}_{XO}}}$ ${S}_{hr}=1-{S}_{xo}$ Bassiouni, 1994 Permeability (k) Timur Model $K=8581\ast \frac{{\varphi }^{4.4}}{Swir{r}^{2}}$ Brock, 1986 Permeability (k) Schlumberger Model $K=10000\ast \frac{{\varphi }^{4.5}}{Swir{r}^{2}}$ Brock, 1986 Flow Capacity (Fm) ${F}_{m}=\frac{{\sum }_{i=1}^{m}{k}_{i}{h}_{i}}{{\sum }_{i=1}^{n}{k}_{i}{h}_{i}};m=1,\dots ,n$ Gunter, et al., 1997 Storage Capacity (Фm) ${\Phi }_{m}=\frac{{\sum }_{i=1}^{m}{\Phi }_{i}{h}_{i}}{{\sum }_{i=1}^{n}{\Phi }_{i}{h}_{i}};m=1,\dots ,n$ Gunter, et al., 1997