Specific Metrics Indicator expression ${Q}_{MI}$ ${Q}_{MI}=2\left[\frac{MI\left(A,F\right)}{H\left(A\right)+H\left(F\right)}+\frac{MI\left(B,F\right)}{H\left(B\right)+H\left(F\right)}\right]$ ${Q}_{TE}$ $\begin{array}{l}{Q}_{TE}^{q}={I}^{q}\left(A,F\right)+{I}^{q}\left(B,F\right)\\ {Q}_{TE}=\frac{{I}^{q}\left(A,F\right)+{I}^{q}\left(B,F\right)}{H\left(A\right)+{H}^{q}\left(B\right)-{I}^{q}\left(A,B\right)}\end{array}$ ${Q}_{NCIE}$ ${Q}_{NCIE}=1+\sum _{i=1}^{3}\frac{{\kappa }_{i}}{3}{\mathrm{log}}_{l}\frac{{\kappa }_{i}}{3}$ ${Q}_{FMI}$ ${Q}_{FMI}=\frac{I\left(F,A\right)}{H\left(A\right)+H\left(F\right)}+\frac{I\left(F,B\right)}{H\left(B\right)+H\left(F\right)}$ ${Q}_{G}$ ${Q}_{G}=\frac{{\sum }_{n}^{N}{\sum }_{m}^{M}\left[{Q}^{AF}\left(i,j\right){\omega }^{A}\left(i,j\right)+{Q}^{BF}\left(i,j\right){\omega }^{B}\left(i,j\right)\right]}{{\sum }_{n}^{N}{\sum }_{m}^{M}\left({\omega }^{A}\left(i,j\right)+{\omega }^{B}\left(i,j\right)\right)}$ ${Q}_{P}$ ${Q}_{P}={\left(\mathrm{max}\left({C}_{AF}^{p},{C}_{BF}^{p},{C}_{SF}^{p}\right)\right)}^{\alpha }\cdot {\left(\mathrm{max}\left({C}_{AF}^{M},{C}_{BF}^{M},{C}_{SF}^{M}\right)\right)}^{\beta }\cdot {\left(\mathrm{max}\left({C}_{AF}^{m},{C}_{BF}^{m},{C}_{SF}^{m}\right)\right)}^{\gamma }$ ${Q}_{M}$ ${Q}_{M}=\prod _{s=1}^{N}{\left(\frac{{\sum }_{m}{\sum }_{n}\left(E{P}_{s}^{AF}\left(m,n\right){\omega }_{s}^{A}\left(m,n\right)+E{P}_{s}^{BF}\left(m,n\right){\omega }_{s}^{B}\left(m,n\right)\right)}{{\sum }_{m}{\sum }_{n}\left({\omega }_{s}^{A}\left(m,n\right)+{\omega }_{s}^{B}\left(m,n\right)\right)}\right)}^{{\alpha }_{s}}$ ${Q}_{SF}$ ${Q}_{SF}=\left(S{F}_{F}-S{F}_{R}\right)/S{F}_{R}$ ${Q}_{C}$ $\begin{array}{c}{Q}_{C}=\sum _{\omega \in W}sim\left(A,B,F|\omega \right)Q\left(A,F|\omega \right)+\left(1-sim\left(A,B,F|\omega \right)Q\left(B,F|\omega \right)\right)\\ =\sum _{\omega \in W}sim\left(A,B,F|\omega \right)\left(Q\left(A,F|\omega \right)-Q\left(B,F|\omega \right)\right)+Q\left(B,F|\omega \right)\end{array}$ ${Q}_{S}$ ${Q}_{S}=\frac{1}{|W|}\sum _{\omega \in W}\left[\lambda \left(\omega \right){Q}_{0}\left(A,F|\omega \right)+\left(1-\lambda \left(\omega \right)\right){Q}_{0}\left(B,F|\omega \right)\right]$ ${Q}_{Y}$ ${Q}_{Y}=\left\{\begin{array}{l}\lambda \left(\omega \right)SSIM\left(A,F|\omega \right)+\left(1-\lambda \left(\omega \right)\right)SSIM\left(B,F|\omega \right),\text{ }SSIM\left(A,B|\omega \right)\ge 0.75\\ \mathrm{max}\left\{SSIM\left(A,F|\omega \right),SSIM\left(B,F|\omega \right)\right\},\text{ }\text{\hspace{0.17em}}\text{ }\text{\hspace{0.17em}}\text{ }\text{\hspace{0.17em}}\text{ }\text{ }\text{ }\text{\hspace{0.17em}}SSIM\left(A,B|\omega \right)\ge 0.75\end{array}$ ${Q}_{CB}$ ${Q}_{CB}=\overline{{\lambda }_{A}\left(i,j\right){Q}_{AF}\left(i,j\right)+{\lambda }_{B}\left(i,j\right){Q}_{BF}\left(i,j\right)}$ ${Q}_{CV}$ ${Q}_{CV}=\frac{{\sum }_{l=1}^{L}\left(\lambda \left({I}_{A}^{{W}_{l}}\right)D\left({I}_{A}^{{W}_{l}},{I}_{F}^{{W}_{l}}\right)+\lambda \left({I}_{B}^{{W}_{l}}\right)D\left({I}_{B}^{{W}_{l}},{I}_{F}^{{W}_{l}}\right)\right)}{{\sum }_{l=1}^{L}\left(\lambda \left({I}_{A}^{{W}_{l}}\right)+\lambda \left({I}_{B}^{{W}_{l}}\right)\right)}$