l P ( 210 210 ( 8 e ) 1 / 2 ) 1 / 4

9.0785

holic central term 210 210 τ 2 m / 3 e e 2 m τ 0 d e 4 r H / ƛ e τ 0 = 3470

l P 2 ( p t / n t ) 6 e 280

9.0767

base e

l P ( Z d e / W ) 7 12 2

9.075

base 7

ƛ e 6 128 / ( 1 + 1 / 2 )

9.075

base 6; 6 / ( 1 + 1 / 2 ) μ d e 2 / τ

ƛ e e 1 / 2 a 6 p G / a

9.076

base 6

2 r H 3 210 / 1830

9.076

base 3 Holic term, with 1830 = ( 60 × 61 ) / 2

ƛ e ( 1 + 1 / 2 ) 6 a s 2 + 1

9.085

base 1 + 1 / 2

ƛ e 5 2 a s 2 + 1 / 6

9.082

base 5

l P ( 7 / 6 ) ( 1836 p ) 1 / 2 / 2 e 2

9.085

base 7 / 6 a 1 / 32

ƛ e ( ( 1 / q ) a W / a F ) 2

9.082

base 1/q

l P e s 65 n t q / 2 p W

9.077

confirms the terminal Euler number s 65 = 1848

l P ( p / H ) ( R Π 26 / R e ) 1 / 3

9.076

with the product of orders of the 26 sporadic groups e 674.5210287 [5]

ƛ e g ( 7 ) ( H / p ) 2 P / 6

9.076

with the reduced topologic function for d = 30 : g ( 7 ) = f ( 30 ) / 7 [5]

24 ƛ e π 210 / a 3

9.077

confirms the base π holic term

a 2 λ W i e n 4 / ( p K l P ) 3

9.078

confirms T C M B with p K = ( 1 + μ + τ ) / 2 [35]

ƛ e ( ( 3 / 4 π ) ( R 1 / ƛ e ) 7 ) 1 / 3

9.078

comes from the de photons nomber, using the mono-electron radius R 1 [5]

ƛ e 137 1836 / ( 2 π ) 2

9.078

base 137

3 l n l 3 / r e l P

9.07

with the non-local length l n l

ƛ e g ( 7 ) ( a 2 p t p G ) 2

9.08

[5]

l P j 60 e 3 1 / 4

9.06

base j, the scale factor

l P e ( n t / a ) 2 / g 2 ( 3 / π ) 1 / 2

9.06

base e, confirms g 2

l P ( n t 2 / l p ) 2 / ( sin θ 1 ) 4

9.06

bases p t and n t

( ln ( R c / ƛ e ) ) 2 ( ln ( M e / m e ) ) 2 + 2 ( ln ( R / ƛ e ) 2 )

9.12

c-observable Universe Cosmos couple ( R / ƛ e = t / t e ) , Figure 1

ł P ( 6 / π ) π a

9.14

base 6 / π

ƛ e g ( 7 ) ( ƛ C M B / r H ) 3

9.1

confirms the invariance of the thermal background [5]

( R l n l ) 3 / 2 / r e 2

9.2

from non-local holography [5]