$\mathrm{min}{\omega }_{D1}^{TC}{\left(T{C}_{D1}-TC\right)}^{2}+{\omega }_{D1}^{ST}{\left(S{T}_{D1}-ST\right)}^{2}+{\epsilon }_{Dj}^{TC}+{\epsilon }_{D1}^{ST}$ (11) $T{C}_{D1}={c}_{D1}\left[{d}_{e\text{}Dj}\beta +{d}_{s\text{}Dj}\left(1-\beta \right)\right]+m\left[{d}_{e\text{}Dj}\beta +{d}_{s\text{}Dj}\left(1-\beta \right)\right]{p}_{D1}{s}_{D1}+T{C}_{R1}+T{C}_{R2}$ (12) $S{T}_{D1}=\mathrm{max}\left(S{T}_{ij}\right)\text{}\left(i=2,3;\text{}j=1,2,\cdots ,n\right)$ (13) ${\sum }_{S{O}_{D1}\in {S}_{D1}}{c}_{D{1}_{}S{O}_{D1}}{y}_{D1,S{O}_{D1}}-{c}_{D{1}_{}S{O}_{D1}}=0$ (14) ${\sum }_{S{O}_{D1}\in {S}_{D1}}{p}_{D{1}_{}S{O}_{D1}}{y}_{D1,S{O}_{D1}}-{p}_{D{1}_{}S{O}_{D1}}=0$ (15) ${y}_{D1,S{O}_{D1}}=\left\{\begin{array}{l}1\text{​}\text{​}\text{​}\text{​}\text{​}\text{selected}\\ 0\text{not}\text{\hspace{0.17em}}\text{selected}\end{array}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\sum }_{S{O}_{D1}\in {S}_{D1}}{y}_{D1,S{O}_{D1}}=1$ (16) ${z}_{Dj}=\left\{\begin{array}{l}0\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{not}\text{\hspace{0.17em}}\text{selected},\text{\hspace{0.17em}}{d}_{Dj}=0\\ \text{1}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{selected},\text{\hspace{0.17em}}{d}_{Dj}\ne 0\end{array}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left(j=1,2\right)$ (17) ${d}_{eD}=\sum _{j=1}^{2}{z}_{Dj}{d}_{eDj},\text{\hspace{0.17em}}{d}_{sD}=\sum _{j=1}^{2}{z}_{Dj}{d}_{sDj}$ (18) $1\le \sum {z}_{Dj}\le 2$ (19) $S{T}_{VD1}-S{T}_{D1}\ge 0,S{T}_{VD1},S{T}_{D1}\ge 0$ and int. (20) $T{C}_{S1},T{C}_{S2}\ge 0$ (21) ${\left(T{C}_{S,1}-T{C}_{S,1}^{4}\right)}^{2}\le {\epsilon }_{D1}^{TC},\text{\hspace{0.17em}}{\left(T{C}_{S,2}-T{C}_{S,2}^{4}\right)}^{2}\le {\epsilon }_{D2}^{TC}$ (22) ${\left(S{T}_{vD1}-\mathrm{max}\left\{S{T}_{S1}^{4},S{T}_{S2}^{4}\right\}\right)}^{2}\le {\epsilon }_{S1}^{ST}$ (23) ${d}_{e\text{}Dj}\le {q}_{e\text{}Dj}+{q}_{s\text{}Dj},\text{\hspace{0.17em}}{d}_{s\text{}Dj}\le {q}_{s\text{}Dj}$ (24) ${d}_{e\text{}Dj}\beta +{d}_{s\text{}Dj}\left(1-\beta \right)={d}_{Dj},\text{\hspace{0.17em}}\text{\hspace{0.17em}}\beta =\left\{\begin{array}{l}1,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{ }\text{ }\text{online-order}\\ 0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{offline-order}\end{array}$ (25) $\frac{{q}_{s\text{}Dj}}{{q}_{e\text{}Dj}}=1$ (26)