min ω G T C ( T C G − T ) 2 + ω G S T ( S T G − S T ) 2 + ε G T C + ε G S T
(1)
T C G = c f 1 + T C D 1 + T C D 2 + T C D 3
(2)
S T G = max ( S T i j ) ( i = 1 , 2 , 3 ; j = 1 , ⋯ , n )
(3)
S T V 1 − S T ≥ 0 , S T V 1 , S T ≥ 0 and int.
(4)
( S T v 1 − max { S T D 1 3 , S T D 2 3 , S T D 3 3 } ) 2 ≤ ε G S T
(5)
( T C D , 1 − T C D , 1 3 ) 2 ≤ ε G 1 T C , ( T C D 2 − T C D 2 3 ) 2 ≤ ε G 2 T C , ( T C D 3 − T C D 3 3 ) 2 ≤ ε G 3 T C
(6)
T C D 1 , T C D 2 , T C D 3 ≥ 0
(7)
d e i j ≤ ∑ i , j = 1 n q e i j + q s i j , d s i j ≤ ∑ i , j = 1 n q s i j
(8)
d e i j β + d s i j ( 1 − β ) = d G , β = { 1 , online-order 0 , offline-order
(9)
q s i j q e i j = 1
(10)