$\frac{2}{5}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{\frac{5}{3}}\right)}^{\frac{3}{5}}}-\frac{1}{{\left[1-{\alpha }^{\frac{5}{3}}{\left(1-ϵ\right)}^{\frac{2}{3}}\right]}^{\frac{3}{5}}}$ $\frac{1}{2}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{2}\right)}^{\frac{1}{2}}}-\frac{1}{{\left[1-{\alpha }^{2}\left(1-ϵ\right)\right]}^{\frac{1}{2}}}$ $\frac{3}{5}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{\frac{5}{2}}\right)}^{\frac{2}{5}}}-\frac{1}{{\left[1-{\alpha }^{\frac{5}{2}}{\left(1-ϵ\right)}^{\frac{3}{2}}\right]}^{\frac{2}{5}}}$ $\frac{7}{10}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{\frac{10}{3}}\right)}^{\frac{3}{10}}}-\frac{1}{{\left[1-{\alpha }^{\frac{10}{3}}{\left(1-ϵ\right)}^{\frac{7}{3}}\right]}^{\frac{3}{10}}}$ $\frac{3}{4}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{4}\right)}^{\frac{1}{4}}}-\frac{1}{{\left[1-{\alpha }^{4}{\left(1-ϵ\right)}^{3}\right]}^{\frac{1}{4}}}$ $\frac{4}{5}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{5}\right)}^{\frac{1}{5}}}-\frac{1}{{\left[1-{\alpha }^{5}{\left(1-ϵ\right)}^{4}\right]}^{\frac{1}{5}}}$ $\frac{8}{9}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{9}\right)}^{\frac{1}{9}}}-\frac{1}{{\left[1-{\alpha }^{9}{\left(1-ϵ\right)}^{8}\right]}^{\frac{1}{9}}}$ $\frac{9}{10}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{10}\right)}^{\frac{1}{10}}}-\frac{1}{{\left[1-{\alpha }^{10}{\left(1-ϵ\right)}^{9}\right]}^{\frac{1}{10}}}$ $\frac{95}{100}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{20}\right)}^{\frac{5}{100}}}-\frac{1}{{\left[1-{\alpha }^{20}{\left(1-ϵ\right)}^{19}\right]}^{\frac{5}{100}}}$ $\frac{99}{100}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{100}\right)}^{\frac{1}{100}}}-\frac{1}{{\left[1-{\alpha }^{100}{\left(1-ϵ\right)}^{99}\right]}^{\frac{1}{100}}}$