p Stability index $\frac{1}{100}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{\frac{100}{99}}\right)}^{\frac{99}{100}}}-\frac{1}{{\left[1-{\alpha }^{\frac{100}{99}}{\left(1-ϵ\right)}^{\frac{1}{99}}\right]}^{\frac{99}{100}}}$ $\frac{1}{50}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{\frac{50}{49}}\right)}^{\frac{49}{50}}}-\frac{1}{{\left[1-{\alpha }^{\frac{50}{49}}{\left(1-ϵ\right)}^{\frac{1}{49}}\right]}^{\frac{49}{50}}}$ $\frac{1}{20}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{\frac{20}{19}}\right)}^{\frac{19}{20}}}-\frac{1}{{\left[1-{\alpha }^{\frac{20}{19}}{\left(1-ϵ\right)}^{\frac{1}{19}}\right]}^{\frac{19}{20}}}$ $\frac{1}{10}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{\frac{10}{9}}\right)}^{\frac{9}{10}}}-\frac{1}{{\left[1-{\alpha }^{\frac{10}{9}}{\left(1-ϵ\right)}^{\frac{1}{9}}\right]}^{\frac{9}{10}}}$ $\frac{1}{9}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{\frac{9}{8}}\right)}^{\frac{8}{9}}}-\frac{1}{{\left[1-{\alpha }^{\frac{9}{8}}{\left(1-ϵ\right)}^{\frac{1}{8}}\right]}^{\frac{8}{9}}}$ $\frac{1}{5}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{\frac{5}{4}}\right)}^{\frac{4}{5}}}-\frac{1}{{\left[1-{\alpha }^{\frac{5}{4}}{\left(1-ϵ\right)}^{\frac{1}{4}}\right]}^{\frac{4}{5}}}$ $\frac{1}{4}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{\frac{4}{3}}\right)}^{\frac{3}{4}}}-\frac{1}{{\left[1-{\alpha }^{\frac{4}{3}}{\left(1-ϵ\right)}^{\frac{1}{3}}\right]}^{\frac{3}{4}}}$ $\frac{3}{10}$ ${\text{Δ}}_{{\mathcal{R}}_{\alpha }}\left(1\right)=\frac{1}{{\left(1-{\alpha }^{\frac{10}{7}}\right)}^{\frac{7}{10}}}-\frac{1}{{\left[1-{\alpha }^{\frac{10}{7}}{\left(1-ϵ\right)}^{\frac{3}{7}}\right]}^{\frac{7}{10}}}$