Theoretical probability of observing each test point and each training point when measuring ancilla qubit in state $|0〉$ Observed probability when running the algorithm on IBM’s simulator Test\Training $\begin{array}{c}{x}_{00}\\ =\left[0,0,0,0\right]\end{array}$ $\begin{array}{c}{x}_{01}\\ =\left[0,0,0,1\right]\end{array}$ $\begin{array}{c}{x}_{10}\\ =\left[1,1,1,0\right]\end{array}$ $\begin{array}{c}{x}_{11}\\ =\left[1,1,1,1\right]\end{array}$ $\begin{array}{c}{x}_{00}\\ =\left[0,0,0,0\right]\end{array}$ $\begin{array}{c}{x}_{01}\\ =\left[0,0,0,1\right]\end{array}$ $\begin{array}{c}{x}_{10}\\ =\left[1,1,1,0\right]\end{array}$ $\begin{array}{c}{x}_{11}\\ =\left[1,1,1,1\right]\end{array}$ [0, 0, 0, 0] 0.25 0.213424 0.036717 1.59E−07 0.253296 0.215942 0.040161 0 [0, 0, 0, 1] 0.213424 0.25 1.59E−07 0.036717 0.225952 0.248047 0 0.035889 [0, 0, 1, 0] 0.213424 0.1251 0.1251 0.036717 0.213379 0.125122 0.126831 0.037598 [0, 0, 1, 1] 0.1251 0.213424 0.036717 0.1251 0.129272 0.20459 0.035278 0.119507 [0, 1, 0, 0] 0.213424 0.1251 0.1251 0.036717 0.213623 0.120728 0.132568 0.03833 [0, 1, 0, 1] 0.1251 0.213424 0.036717 0.1251 0.123901 0.216064 0.033691 0.125244 [0, 1, 1, 0] 0.1251 0.036717 0.213424 0.1251 0.122803 0.037842 0.211792 0.12793 [0, 1, 1, 1] 0.036717 0.1251 0.1251 0.213424 0.03479 0.121094 0.126953 0.2146 [1, 0, 0, 0] 0.213424 0.1251 0.1251 0.036717 0.215332 0.11853 0.128174 0.036499 [1, 0, 0, 1] 0.1251 0.213424 0.036717 0.1251 0.130005 0.217896 0.032593 0.121582 [1, 0, 1, 0] 0.1251 0.036717 0.213424 0.1251 0.12793 0.036011 0.211182 0.126343 [1, 0, 1, 1] 0.036717 0.1251 0.1251 0.213424 0.035522 0.127808 0.11853 0.211548 [1, 1, 0, 0] 0.1251 0.036717 0.213424 0.1251 0.124268 0.03894 0.200928 0.129395 [1, 1, 0, 1] 0.036717 0.1251 0.1251 0.213424 0.036987 0.120605 0.126099 0.213867 [1, 1, 1, 0] 0.036717 1.59E−07 0.25 0.213424 0.037231 0 0.251709 0.21521 [1, 1, 1, 1] 1.59E−07 0.036717 0.213424 0.25 0 0.036255 0.211914 0.25061