Parameter Microscopic/ macroscopic Formula Reference Mean, $\overline{{\epsilon }_{s}}$ Macroscopic $\overline{{\epsilon }_{s}}=\frac{1}{N}\sum _{i\text{\hspace{0.17em}}=\text{\hspace{0.17em}}1}^{N}{\epsilon }_{s}\left(i\right)$ [1] [7] [8] [12] [16] Standard Deviation, $\sigma \left({\epsilon }_{s}\right)$ Microscopic $\sigma \left({\epsilon }_{s}\right)=\sqrt{\frac{1}{N-1}\sum _{i=1}^{N}{\left({\epsilon }_{s}\left(i\right)-\overline{{\epsilon }_{s}}\right)}^{2}}$ [8] [22] [23] Skewness, ${S}_{k}$ Microscopic ${S}_{k}=\frac{1}{N\sigma {\left({\epsilon }_{S}\right)}^{3}}\sum _{i=1}^{N}{\left({\epsilon }_{S}\left(i\right)-\overline{{\epsilon }_{S}}\right)}^{3}$ [7] [8] [23] Kurtosis, ${K}_{u}$ Microscopic ${K}_{u}=\frac{1}{N\sigma {\left({\epsilon }_{S}\right)}^{4}}\sum _{i=1}^{N}{\left({\epsilon }_{S}\left(i\right)-\overline{{\epsilon }_{S}}\right)}^{4}$ [8] [23] Intermittent Index, $\gamma$ Macroscopic $\gamma =\frac{\sigma \left({\epsilon }_{s}\right)}{\sigma {\left({\epsilon }_{s}\right)}_{\mathrm{max}}}=\frac{\sigma \left({\epsilon }_{s}\right)}{\sqrt{\overline{\overline{{\epsilon }_{s}}\left(1-\overline{{\epsilon }_{s}}-{\epsilon }_{s,mf}\right)}}}$ [7] [22] Average Absolute Deviation (AAD) Microscopic $AAD=\frac{1}{N}\sum _{i=1}^{N}\left(|{\epsilon }_{s}\left(i\right)-\overline{{\epsilon }_{s}}|\right)$ [18] [23] Radial Non-Uniformity Index (RNI) Macroscopic $RNI\left({\epsilon }_{s}\right)=\frac{\sigma \left({\epsilon }_{s}\right)}{\sigma {\left({\epsilon }_{s}\right)}_{\mathrm{max}}}=\frac{\sigma \left({\epsilon }_{s}\right)}{\sqrt{\overline{{\epsilon }_{s}}\left({\epsilon }_{s,mf}-\overline{{\epsilon }_{s}}\right)}}$ [16] [21] Probability Density Function (PDF) Microscopic $f\left(x\right)=\mathrm{Pr}\left[{\epsilon }_{s}=x\right]$ [1] [7] [12] Coefficient of Variation, CV Macroscopic $CV=\frac{\sigma \left({\epsilon }_{s}\right)}{\overline{{\epsilon }_{s}}}$ [18] [23]