Number of the term Partition symbol applied in the present method Energy result obtained in [34] 1 1 1 1 1 1 $〈VPVPVPVPVPV〉$ 2 2 1 1 1 $-〈V{P}^{2}VPVPVPV〉\Delta {E}_{1}$ 3 3 1 1 (1st term) $-〈V{P}^{2}VPVPV〉\Delta {E}_{2}$ 4 3 1 1 (2nd term) $〈V{P}^{3}VPVPV〉{\left(\Delta {E}_{1}\right)}^{2}$ 5 1 2 1 1 $-〈VPV{P}^{2}VPVPV〉\Delta {E}_{1}$ 6, 7 4 1 (1st term) $-〈V{P}^{2}VPV〉\Delta {E}_{3}$ 8 4 1 (2nd term) $〈V{P}^{3}VPV〉\Delta {E}_{1}\Delta {E}_{2}$ 9 4 1 (3rd term) $〈V{P}^{3}VPV〉\Delta {E}_{2}\Delta {E}_{1}$ 10 4 1 (4th term) $-〈V{P}^{4}VPV〉{\left(\Delta {E}_{1}\right)}^{3}$ 11 1 3 1 (1st term) $-〈VPV{P}^{2}VPV〉\Delta {E}_{2}$ 12 1 3 1 (2nd term) $〈VPV{P}^{3}VPV〉{\left(\Delta {E}_{1}\right)}^{2}$ 13 1 1 2 1 $-〈VPVPV{P}^{2}VPV〉\Delta {E}_{1}$ 14 2 2 1 $〈V{P}^{2}V{P}^{2}VPV〉\Delta {E}_{1}$ 15-19 5 (1st term) $-〈V{P}^{2}V〉\Delta {E}_{4}$ 20, 21 5 (2nd term) $〈V{P}^{3}V〉\Delta {E}_{1}\Delta {E}_{3}$ 22 5 (3rd term) $〈V{P}^{3}V〉{\left(\Delta {E}_{2}\right)}^{2}$ 23, 24 5 (4th term) $〈V{P}^{3}V〉\Delta {E}_{3}\Delta {E}_{1}$ 25 5 (5th term) $-〈V{P}^{4}V〉{\left(\Delta {E}_{1}\right)}^{2}\Delta {E}_{2}$ 26 5 (6th term) $-〈V{P}^{4}V〉\Delta {E}_{1}\Delta {E}_{2}\Delta {E}_{1}$ 27 5 (7th term) $-〈V{P}^{4}V〉\Delta {E}_{2}{\left(\Delta {E}_{1}\right)}^{2}$ 28 5 (8th term) $〈V{P}^{5}V〉{\left(\Delta {E}_{1}\right)}^{4}$ 29, 30 1 4 (1st term) $-〈VPV{P}^{2}V〉\Delta {E}_{3}$ 31 1 4 (2nd term) $〈VPV{P}^{3}V〉\Delta {E}_{1}\Delta {E}_{2}$ 32 1 4 (3rd term) $〈VPV{P}^{3}V〉\Delta {E}_{2}\Delta {E}_{1}$ 33 1 4 (4th term) $〈VPV{P}^{4}V〉{\left(\Delta {E}_{1}\right)}^{4}$ 34 1 1 3 (1st term) $-〈VPVPV{P}^{2}V〉\Delta {E}_{2}$ 35 1 1 3 (2nd term) $〈VPVPV{P}^{3}V〉{\left(\Delta {E}_{1}\right)}^{2}$