Constants and calculated parameters Measure Used formulas Results of calculations Т of the MeH layer: the upper/the lower layer borders K 104/2.0 ´ 104 Radius of the outer spherical surface of the MeH layer, ${R}_{{\text{Me}}_{\text{H}}}$ m 5.75 ´ 107 Thickness of the layer, $\Delta {R}_{{\text{Me}}_{\text{H}}}$ m 4.45 ´ 107 Intensity of the thermofield ${E}_{{\text{Me}}_{\text{H}}}^{Т}$ in the MeH layer when ΔT = 10000 К V/m ${E}_{{\text{Me}}_{\text{H}}}^{Т}={\beta }_{\ast }\Delta T/\Delta {R}_{{\text{Me}}_{\text{H}}}$ , (2) where β = 0.0001 V/deg 2.25 ´ 10−8 Area of the spherical surface ${S}_{{\text{Me}}_{\text{H}}}$ with radius ${R}_{{\text{Me}}_{\text{H}}}$ m2 ${S}_{{\text{Me}}_{\text{H}}}=4\text{π}{R}_{{\text{Me}}_{\text{H}}}^{2}$ 4.15 ´ 1016 Core radius, RC m 1.3 ´ 107 Equatorial radius of Jupiter, Re m 7.15 ´ 107 Polar radius of Jupiter , Rp m 6.68 ´ 107 Planck’s constant, ħ J・s 1.05 ´ 10−34 Electron charge, е C 1.6 ´ 10−19 Electron mass, mе kg 9.1 ´ 10−31 electrical conductivity of the MeH layer, σ S/m 470 Concentration of electrons in the MeH layer (calculated by the formula for metals), medium, n m−3 $n=b{\left(5\frac{{m}_{е}}{{\hslash }^{2}}{\left(3{\text{π}}^{2}\right)}^{-2/3}\right)}^{3/5}{p}^{3/5}$ (7) 5.64 ´ 1027 Concentration of electrons in the MeH layer (calculated by formula, considering density Нmetall $\rho =70.8\text{kg}/{\text{m}}^{\text{3}}$ ) m−3 $n=\rho \frac{{N}_{A}}{A}$ (8) 4.23 ´ 1022 Fermi momentum, pF m・kg/s ${p}_{F}=\hslash {\left(3{\text{π}}^{2}n\right)}^{1/3}$ (6) 1.14 ´ 10−26 Electron mean free path, l nm $l=\frac{\sigma \hslash {\left(3{\text{π}}^{2}\right)}^{1/3}}{{e}^{2}{n}^{2/3}}{10}^{9}$ (5) 49.3 Current density, ${j}_{{\text{Me}}_{\text{H}}}$ A/m2 ${j}_{{\text{Me}}_{\text{H}}}={e}^{2}n{E}_{{\text{Me}}_{\text{H}}}^{Т}\frac{l}{{p}_{F}}$ (3) 1.06 ´ 10−5 Total current value of the MeH layer, through the ${S}_{{\text{Me}}_{\text{H}}}$ surface, ${I}_{{\text{Me}}_{\text{H}}}$ А ${I}_{{\text{Me}}_{\text{H}}}=\text{}{j}_{{\text{Me}}_{\text{H}}}{S}_{{\text{Me}}_{\text{H}}}$ (9) 4.39 ´ 1011 Calculated magnetic induction on the Jupiter’s pole ${B}_{{\text{Me}}_{\text{H}}}^{p}$ / Measured magnetic induction on the pole ${B}_{ju}^{p}$ T ${B}_{{\text{Me}}_{\text{H}}}^{p}=\frac{3{\mu }_{0}{I}_{{\text{Me}}_{\text{H}}}\text{Δ}{R}_{{\text{Me}}_{\text{H}}}}{4\text{π}{R}_{p}^{2}}\text{sin}\alpha$ (11) 1.23 ´ 10−3 /1.4 ´ 10−3 Calculated magnetic induction on the Jupiter’s equator ${B}_{{\text{Me}}_{\text{H}}}^{e}$ / Measured magnetic induction on the equator ${B}_{ju}^{e}$ T ${B}_{{\text{Me}}_{\text{H}}}^{e}=\frac{3{\mu }_{0}{I}_{{\text{Me}}_{\text{H}}}\text{Δ}{R}_{{\text{Me}}_{\text{H}}}}{4\text{π}{R}_{e}^{2}}\text{sin}\alpha$ (11) 1.15 ´ 10−3 /4.2 ´ 10−4