Constants and calculated parameters | Measure | Used formulas | Results of calculations |
Т of the MeH layer: the upper/the lower layer borders | K |
| 104/2.0 ´ 104 |
Radius of the outer spherical surface of the MeH layer, RMeH | m |
| 5.75 ´ 107 |
Thickness of the | m |
| 4.45 ´ 107 |
Intensity of the thermofield EТMeH in the MeH layer when ΔT = 10000 К | V/m | EТMeH=β∗ΔT/ΔRMeH , (2) where β = 0.0001 V/deg | 2.25 ´ 10−8 |
Area of the spherical surface SMeH with radius RMeH | m2 | SMeH=4πR2MeH | 4.15 ´ 1016 |
Core radius, RC | m |
| 1.3 ´ 107 |
Equatorial radius of Jupiter, Re | m |
| 7.15 ´ 107 |
Polar radius of Jupiter , Rp | m |
| 6.68 ´ 107 |
Planck’s constant, ħ | J・s |
| 1.05 ´ 10−34 |
Electron charge, е | C |
| 1.6 ´ 10−19 |
Electron mass, mе | kg |
| 9.1 ´ 10−31 |
electrical conductivity of the MeH layer, σ | S/m |
| 470 |
Concentration of electrons in the MeH layer (calculated by the formula for metals), medium, n | m−3 | n=b(5mеℏ2(3π2)−2/3)3/5p3/5 (7) | 5.64 ´ 1027 |
Concentration of electrons in the MeH layer (calculated by formula, considering density Нmetall ρ=70.8kg/m3 ) | m−3 | n=ρNAA (8) | 4.23 ´ 1022 |
Fermi momentum, pF | m・kg/s | pF=ℏ(3π2n)1/3 (6) | 1.14 ´ 10−26 |
Electron mean free path, l | nm | l=σℏ(3π2)1/3e2n2/3109 (5) | 49.3 |
Current density, jMeH | A/m2 | jMeH=e2nEТMeHlpF (3) | 1.06 ´ 10−5 |
Total current value of the MeH layer, through the SMeH surface, IMeH | А | IMeH=jMeHSMeH (9) | 4.39 ´ 1011 |
Calculated magnetic induction on the Jupiter’s pole BpMeH / Measured magnetic induction on the pole Bpju | T | BpMeH=3μ0IMeHΔRMeH4πR2psinα (11) | 1.23 ´ 10−3 /1.4 ´ 10−3 |
Calculated magnetic induction on the Jupiter’s equator BeMeH / Measured magnetic induction on the equator Beju | T | BeMeH=3μ0IMeHΔRMeH4πR2esinα (11) | 1.15 ´ 10−3 /4.2 ´ 10−4 |