7th Generation Row Column Node Appendix references Concept Depends on/ Related to Contribution 7 1 PP7,1 [44] Soil temperature PP6,1 Results show that soil organic matter (SOM) is related to soil temperature. Soil temperature is an important factor which affects soil organic matter (SOM) decomposition rate (pages 399, 403, 404)6 7 2 PP7,2 [16] Effective porosity PP6,3 Effective porosity (Φe) depends on the porosity (Φ) according to the (equation 19, page 23). ${\Phi }_{e}=\left(1-{S}_{r}\right)\ast \Phi$ where the terms, definitions and dimensions of $\left({\Phi }_{e},{S}_{r},\Phi \right)$ are presented in detail in the below terminology (Table A8) of the Appendix. 7 3 PP7,3 [27] Soil water retention PP6,4 Statistics of the soil pore radius distribution function g(r), is related to the water retention curve of Kosugi’s further modified water retention model in which two parameters with physical significance are involved (page 1).7 7 4 ASTM7,4 [9] Soil temperature ASTM6,5 Thermal conductivity (λs) depends on soil temperature (T), according to the implicit function: $\begin{array}{l}{\lambda }_{s}=\left(\frac{{\rho }_{s}\ast {z}^{4}}{{t}^{3}\ast {T}_{i}}\right)\ast f\left(\left(\frac{{z}^{2}}{{C}_{s}\ast {t}^{2}\ast {T}_{i}}\right),\left(\frac{{z}^{2}}{t\ast {a}_{s}}\right),\left(\frac{{z}^{3}}{{V}_{s}}\right),\left(\frac{{T}_{i}}{\left(\frac{\text{d}T}{\text{d}z}\right)\ast z}\right),\left(\frac{{\rho }_{s}\ast {z}^{3}}{{t}^{3}\ast {T}_{i}\ast {k}_{th\left(s\right)}}\right),\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left(\frac{{\rho }_{s}\ast {z}^{3}}{{t}^{3}\ast {T}_{i}\ast {k}_{th\left(w\right)}}\right),\left(\frac{{\rho }_{s}\ast {z}^{4}}{{t}^{3}\ast {T}_{i}\ast {\lambda }_{w}}\right),\left(Pr\right),\left(St\right),\left(\frac{{z}^{2}}{{t}^{2}\ast {T}_{i}\ast {C}_{w}}\right),\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\begin{array}{c}\stackrel{}{}\\ \\ \end{array}\left(\frac{{z}^{2}}{A}\right),\left(\frac{z}{t\ast {v}_{z}}\right),\left(\frac{{z}^{3}}{V}\right),\left(\frac{{\rho }_{s}\ast {z}^{2}}{t\ast \mu }\right),\Phi ,n,i\right)\end{array}$ where the terms, definitions and dimensions of $\left({\lambda }_{s},{\rho }_{s},z,t,{\lambda }_{w},{T}_{i},z,{C}_{s},{C}_{w},{k}_{th\left(w\right)},{k}_{th\left(s\right)},V,\frac{\text{d}T}{\text{d}z},\mu ,{v}_{z},A,{K}_{th},\Phi ,n,i\right)$ are presented in detail in the terminology (Table A8) of the Appendix. For clarification purposes, (Φ) is the total porosity and (n) is pore size distribution index. Rayleigh’s method of indices was deployed along with the echelon matrix procedure as an additional confirmation method. 7 5 ASTM7,5 [13] Specific heat capacity ASTM6,5 Thermal conductivity (λs) depends on specific heat capacity (C), according to the implicit function: $\begin{array}{l}{\lambda }_{s}=\left(\frac{{V}_{s}^{\frac{1}{3}}\ast {M}_{s}}{{t}^{3}\ast \left(\Delta T\right)}\right)\ast f\left(\left(\frac{{V}_{s}^{\frac{2}{3}}}{C\ast {t}^{2}\ast \Delta T}\right),\left(\frac{{M}_{s}}{{\rho }_{s}\ast {V}_{s}}\right),\left(\frac{{V}_{s}^{\frac{2}{3}}}{t\ast {a}_{s}}\right),\left(\frac{\Delta T}{{V}_{s}^{\frac{1}{3}}\ast \left(\frac{\text{d}T}{\text{d}z}\right)}\right),\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\begin{array}{c}\stackrel{}{}\\ \\ \end{array}\left(\frac{{M}_{s}}{{t}^{3}\ast \left(\Delta T\right)\ast {k}_{th}}\right),\left(\frac{{V}_{s}^{\frac{2}{3}}}{A}\right),\Phi ,n\right)\end{array}$ where the terms, definitions and dimensions of $\left({\lambda }_{s},{V}_{s},{M}_{s},t,T,C,{\rho }_{s},{a}_{s},{k}_{th},A,\Phi ,n\right)$ are presented in detail in the terminology (Table A8) of the Appendix. Where (C) refers to mean specific heat capacity, (Φ) is the total porosity and (n) is pore size distribution index. Rayleigh’s method of indices was deployed along with the echelon matrix procedure as an additional confirmation method.