${G}_{1}=\mathrm{cosh}\frac{\alpha }{2}\left({h}_{1}-{h}_{2}\right)$ ${D}_{3}=\mathrm{sinh}\left(\alpha {h}_{2}\right)-\mathrm{sinh}\left(\alpha {h}_{1}\right)$ ${F}_{2}={E}_{4}{E}_{2}$ ${G}_{2}=\mathrm{sinh}\frac{\alpha }{2}\left({h}_{1}-{h}_{2}\right)$ ${D}_{4}=\mathrm{cosh}\left(\alpha {h}_{2}\right)-\mathrm{cosh}\left(\alpha {h}_{1}\right)$ ${F}_{3}={E}_{4}{E}_{3}$ ${B}_{1}=\frac{-\left({h}_{1}+{h}_{2}\right)\left[F\alpha {G}_{1}+2{G}_{2}\right]}{2\left({h}_{1}-{h}_{2}\right)\alpha {G}_{1}-4{G}_{2}}$ ${E}_{1}=\left({B}_{3}^{2}-{B}_{4}^{2}\right)/2$ ${F}_{4}={E}_{5}{B}_{3}$ ${B}_{2}=\frac{F\alpha {G}_{1}+2{G}_{2}}{\left({h}_{1}-{h}_{2}\right)\alpha {G}_{1}-2{G}_{2}}$ ${E}_{2}=\frac{{B}_{3}^{2}+{B}_{4}^{2}}{2}$ ${F}_{5}={E}_{5}{B}_{4}$ ${B}_{3}=\frac{\left({h}_{1}-{h}_{2}+F\right)\mathrm{sinh}\frac{\alpha }{2}\left({h}_{1}+{h}_{2}\right)}{\left({h}_{1}-{h}_{2}\right)\alpha {G}_{1}-2{G}_{2}}$ ${E}_{3}={B}_{3}{B}_{4}$ ${P}_{1}=Br\left(1+1/\beta \right)$ ${B}_{4}=\frac{-\left({h}_{1}-{h}_{2}+F\right)\mathrm{cosh}\frac{\alpha }{2}\left({h}_{1}+{h}_{2}\right)}{\left({h}_{1}-{h}_{2}\right)\alpha {G}_{1}-2{G}_{2}}$ ${E}_{4}=\frac{{P}_{1}{\alpha }^{2}+{P}_{2}}{4}$ ${P}_{2}=Br\frac{{M}^{2}}{1+{m}^{2}}$ ${D}_{1}=\mathrm{cosh}\left(2\alpha {h}_{2}\right)-\mathrm{cosh}\left(2\alpha {h}_{1}\right)$ ${E}_{5}=2{P}_{2}{P}_{3}/\alpha$ ${P}_{3}=1+{B}_{2}$ ${D}_{2}=\mathrm{sinh}\left(2\alpha {h}_{2}\right)-\mathrm{sinh}\left(2\alpha {h}_{1}\right)$ ${F}_{1}=\left(\left({P}_{1}{\alpha }^{2}-{P}_{2}\right){E}_{1}{\alpha }^{2}+{P}_{1}{P}_{3}^{2}\right)/2$ ${B}_{5}=\left[1+{F}_{1}\left({h}_{2}^{2}-{h}_{1}^{2}\right)+{F}_{2}{D}_{1}+{F}_{3}{D}_{2}+{F}_{4}{D}_{3}+{F}_{5}{D}_{4}\right]/\left({h}_{2}-{h}_{1}\right)$ ${B}_{6}=-{B}_{5}{h}_{1}-{F}_{1}{h}_{1}{}^{2}-{F}_{2}\mathrm{cosh}\left(2\alpha {h}_{1}\right)-{F}_{3}\mathrm{sinh}\left(2\alpha {h}_{1}\right)-{F}_{4}\mathrm{sinh}\left(\alpha {h}_{1}\right)-{F}_{5}\mathrm{cosh}\left(\alpha {h}_{1}\right)$