What to measure or predict | Formula | How | Is it easy to do? | Knowledge of G or M |
Exact solution (strong and weak fields): | ||||
Schwarzschild radius | rs=RLRh(λ2h−λ2L)λ2hRh−λ2LRL | Light observations only | Yes | No |
Gravitational acceleration | gL=12c2Rh(λ2h−λ2L)λ2hRhRL−λ2LR2L | Light observations only | Yes | No |
Gravitational acceleration | gh=12c2RL(λ2h−λ2L)λ2hR2h−λ2LRLRh | Light observations only | Yes | No |
Orbital velocity | vo,L=c√12Rh(λ2h−λ2L)λ2hRh−λ2LRL | Light observations only | Yes | No |
Orbital velocity | vo,h=c√12c2RL(λ2h−λ2L)λ2hRh−λ2LRL | Light observations only | Yes | No |
Escape velocity | ve,L=c√Rh(λ2h−λ2L)λ2hRh−λ2LRL | Light observations only | Yes | No |
Escape velocity | ve,h=c√RL(λ2h−λ2L)λ2hRh−λ2LRL | Light observations only | Yes | No |
Time dilation | t2=t1√1−Rh(λ2h−λ2L)λ2hRh−λ2LRL | Light observations only | Yes | No |
GR bending of light | δL=2Rh(λ2h−λ2L)λ2hRh−λ2LRL | Light observations only | Yes | No |
GR bending of light | δh=2RL(λ2h−λ2L)λ2hRh−λ2LRL | Light observations only | Yes | No |
Gravitational redshift | limRh→∞z(RL)=12Rh(λ2h−λ2L)λ2hRh−λ2LRL | Light observations only | Yes | No |
Gravitational redshift | limRh→∞z(Rh)=12RL(λ2h−λ2L)λ2hRh−λ2LRL | Light observations only | Yes | No |