What to measure or predict Formula How Is it easy to do? Knowledge of G or M Exact solution (strong and weak fields): Schwarzschild radius ${r}_{s}=\frac{{R}_{L}{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}$ Light observations only Yes No Gravitational acceleration ${g}_{L}=\frac{1}{2}\frac{{c}^{2}{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}{R}_{L}-{\lambda }_{L}^{2}{R}_{L}^{2}}$ Light observations only Yes No Gravitational acceleration ${g}_{h}=\frac{1}{2}\frac{{c}^{2}{R}_{L}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}^{2}-{\lambda }_{L}^{2}{R}_{L}{R}_{h}}$ Light observations only Yes No Orbital velocity ${v}_{o,L}=c\sqrt{\frac{1}{2}\frac{{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}}$ Light observations only Yes No Orbital velocity ${v}_{o,h}=c\sqrt{\frac{1}{2}}\frac{{c}^{2}{R}_{L}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}$ Light observations only Yes No Escape velocity ${v}_{e,L}=c\sqrt{\frac{{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}}$ Light observations only Yes No Escape velocity ${v}_{e,h}=c\sqrt{\frac{{R}_{L}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}}$ Light observations only Yes No Time dilation ${t}_{2}={t}_{1}\sqrt{1-\frac{{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}}$ Light observations only Yes No GR bending of light ${\delta }_{L}=2\frac{{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}$ Light observations only Yes No GR bending of light ${\delta }_{h}=2\frac{{R}_{L}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}$ Light observations only Yes No Gravitational redshift ${\mathrm{lim}}_{{R}_{h}\to \infty }z\left({R}_{L}\right)=\frac{1}{2}\frac{{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}$ Light observations only Yes No Gravitational redshift ${\mathrm{lim}}_{{R}_{h}\to \infty }z\left({R}_{h}\right)=\frac{1}{2}\frac{{R}_{L}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}$ Light observations only Yes No