What to measure or predict Formula How Is it easy to do? Knowledge of G or M Exact solution (strong and weak fields): Schwarzschild radius ${r}_{s}=\frac{{R}_{L}{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}$ Light observations only Yes No Gravitational acceleration $g=\frac{1}{2}\frac{{R}_{L}{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}\frac{{c}^{2}}{{R}^{2}}$ Light observations only Yes No Orbital velocity ${v}_{o}=c\sqrt{\frac{1}{2}\frac{{R}_{L}{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}\frac{1}{R}}$ Light observations only Yes No Escape velocity ${v}_{e}=c\sqrt{\frac{{R}_{L}{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}\frac{1}{R}}$ Light observations only Yes No Time dilation ${t}_{2}={t}_{1}\sqrt{1-\frac{{R}_{L}{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}\frac{1}{R}}$ Light observations only Yes No GR bending of light $\delta =\frac{2{R}_{L}{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}\frac{1}{R}$ Light observations only Yes No Gravitational redshift ${\mathrm{lim}}_{{R}_{h}\to \infty }z\left({R}_{L}\right)=\frac{1}{2}\frac{{R}_{L}{R}_{h}\left({\lambda }_{h}^{2}-{\lambda }_{L}^{2}\right)}{{\lambda }_{h}^{2}{R}_{h}-{\lambda }_{L}^{2}{R}_{L}}\frac{1}{R}$ Light observations only Yes No Weak field approximations: Schwarzschild radius ${r}_{s}=\frac{2{R}_{L}{R}_{h}\left({\lambda }_{h}-{\lambda }_{L}\right)}{{\lambda }_{h}{R}_{h}-{\lambda }_{L}{R}_{L}}$ Light observations only Yes No Gravitational acceleration $g=\frac{{R}_{L}{R}_{h}\left({\lambda }_{h}-{\lambda }_{L}\right)}{{\lambda }_{h}{R}_{h}-{\lambda }_{L}{R}_{L}}\frac{{c}^{2}}{{R}^{2}}$ Light observations only Yes No Orbital velocity ${v}_{o}=c\sqrt{\frac{{R}_{L}{R}_{h}\left({\lambda }_{h}-{\lambda }_{L}\right)}{{\lambda }_{h}{R}_{h}-{\lambda }_{L}{R}_{L}}\frac{1}{R}}$ Light observations only Yes No Escape velocity ${v}_{e}=c\sqrt{\frac{2{R}_{L}{R}_{h}\left({\lambda }_{h}-{\lambda }_{L}\right)}{{\lambda }_{h}{R}_{h}-{\lambda }_{L}{R}_{L}}\frac{1}{R}}$ Light observations only Yes No Time dilation ${t}_{2}={t}_{1}\sqrt{1-\frac{2{R}_{L}{R}_{h}\left({\lambda }_{h}-{\lambda }_{L}\right)}{{\lambda }_{h}{R}_{h}-{\lambda }_{L}{R}_{L}}\frac{1}{R}}$ Light observations only Yes No GR bending of light $\delta =4\frac{{R}_{L}{R}_{h}\left({\lambda }_{h}-{\lambda }_{L}\right)}{{\lambda }_{h}{R}_{h}-{\lambda }_{L}{R}_{L}}\frac{1}{R}$ Light observations only Yes No Gravitational redshift ${\mathrm{lim}}_{{R}_{h}\to \infty }z\left(R\right)=\frac{{R}_{L}{R}_{h}\left({\lambda }_{h}-{\lambda }_{L}\right)}{{\lambda }_{h}{R}_{h}-{\lambda }_{L}{R}_{L}}\frac{1}{R}$ Light observations only Yes No