Function Definition Property SCH1 $\mathrm{min}f\left(x\right)=\left({f}_{1}\left(x\right),{f}_{2}\left(x\right)\right)\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{s}\text{.t}\text{.}\text{\hspace{0.17em}}x\in \left[-5,7\right]$ ${f}_{1}\left(x\right)={x}^{2}$ ${f}_{2}\left(x\right)={\left(x-2\right)}^{2}$ Convex SCH2 $\mathrm{min}f\left(x\right)=\left({f}_{1}\left(x\right),{f}_{2}\left(x\right)\right)\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{s}\text{.t}.\text{\hspace{0.17em}}x\in \left[-5,10\right]$ ${f}_{1}\left(x\right)=\left\{\begin{array}{l}-x,\left(x\le 1\right)\\ -2+x,\left(14\right)\end{array}$ ${f}_{2}\left(x\right)={\left(x-5\right)}^{2}$ Discontinuous ZDT2 $\mathrm{min}f\left(x\right)=\left({f}_{1}\left(x\right),{f}_{2}\left(x\right)\right)\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{s}\text{.t}.\text{\hspace{0.17em}}x\in \left[-5,10\right]$ ${f}_{1}\left(x\right)={x}_{1}$ ${f}_{2}\left(x\right)=g\left(x\right)\left[1-{\left({x}_{1}/g\left(x\right)\right)}^{2}\right]$ $g\left(x\right)=1+9\left(\sum _{i=2}^{n}{x}_{i}\right)/\left(n-1\right)$ Concave ZDT3 $\mathrm{min}f\left(x\right)=\left({f}_{1}\left(x\right),{f}_{2}\left(x\right)\right)\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{s}\text{.t}.\text{\hspace{0.17em}}{x}_{i}\in \left[0,1\right]$ ${f}_{1}\left(x\right)={x}_{1}$ ${f}_{2}\left(x\right)=g\left(x\right)\left[1-\sqrt{{x}_{1}/g\left(x\right)}-\frac{{x}_{1}}{g\left(x\right)}\mathrm{sin}\left(10\text{π}{x}_{1}\right)\right]$ $g\left(x\right)=1+9\left(\sum _{i=2}^{n}{x}_{i}\right)/\left(n-1\right)$ Discrete