Equation (which constant) Original Equation (T0) New Equation (T) Einstein’s Equation for Special Relativity (c0) $\Delta {t}_{B}=\frac{\Delta {t}_{A}}{\sqrt{1-\frac{{v}^{2}}{{c}^{2}}}}$ $u\left({v}_{r},{v}^{\prime }\right)=\frac{{v}_{r}+{v}^{\prime }}{1+\frac{{v}_{r}{v}^{\prime }}{{c}^{2}}}$ $\Delta {t}_{BT}=\frac{\Delta {t}_{AT}}{\sqrt{1-\frac{{T}_{0}^{2}{v}^{2}}{{T}^{2}{c}_{0}^{2}}}}$ $u{\left({v}_{r},{v}^{\prime }\right)}_{T}=\frac{{v}_{r}+{v}^{\prime }}{1+\frac{{T}_{0}^{2}{v}_{r}{v}^{\prime }}{{T}^{2}{c}_{0}^{2}}}$ Dirac Equation (c0) $\left(\beta m{c}^{2}+c{\int }_{n=1}^{3}{\alpha }_{n}{p}_{n}\right)\phi \left(x,t\right)=ih\frac{\partial \phi \left(x,t\right)}{\partial t}$ $\left(\beta m\frac{{T}^{2}}{{T}_{0}^{2}}{c}_{0}^{2}+\frac{T}{{T}_{0}}{c}_{0}{\int }_{n=1}^{3}{\alpha }_{n}{p}_{n}\right)\phi \left(x,t\right)=ih\frac{\partial \phi \left(x,t\right)}{\partial t}$ Planck’s Equation for Blackbody Radiation (c0) $\frac{N\left(v\right)}{V}\text{d}v=\frac{8\pi }{{c}_{0}^{3}}{v}^{2}\frac{1}{{\text{e}}^{hv/k{T}_{bd}}-1}\text{d}v$ $\frac{N\left(v\right)}{V}\text{d}v=\frac{8\pi {T}_{0}^{3}}{{T}^{3}{c}_{0}^{3}}{v}^{2}\frac{1}{{\text{e}}^{hv/k{T}_{bd}}-1}\text{d}v$ plasma frequency (ε0) ${w}_{p}^{2}=\frac{{n}_{0}{q}_{e}^{2}}{{\epsilon }_{0}{m}_{e}}$ ${w}_{pT}^{2}=\frac{T{n}_{0}{q}_{e}^{2}}{{T}_{0}{\epsilon }_{0}{m}_{e}}$ Ampere’s law (ε0, c0) $\oint B\cdot \text{d}s=\frac{I}{{\epsilon }_{0}{c}_{0}^{2}}$ $\oint B\cdot \text{d}s=\frac{{T}_{0}I}{T{\epsilon }_{0}{c}_{0}^{2}}$