Parameter Virgo value $r={R}_{c}\overline{r}$ ${R}_{c}=6.8×{10}^{22}\text{ }\text{ }\text{m}$ $\frac{\partial }{\partial \overline{r}}=4\pi {\overline{r}}^{2}\overline{\rho }\frac{\partial }{\partial \overline{m}}$ $m={M}_{c}\overline{m}$ ${M}_{c}=1×{10}^{45}\text{ }\text{ }\text{kg}$ $\rho =\frac{{M}_{c}}{{R}_{c}^{3}}\overline{\rho }$ $\frac{{M}_{c}}{{R}_{c}^{3}}=3.2×{10}^{-24}\text{ }\text{ }\text{kg}\cdot {\text{m}}^{-3}$ $p=\frac{G{M}_{c}^{2}}{{R}_{c}^{4}}\overline{p}$ $\frac{G{M}_{c}^{2}}{{R}_{c}^{4}}=3.2×{10}^{-12}\text{ }\text{ }\text{nt}\cdot {\text{m}}^{-2}$ $\psi =G{M}_{c}^{1/3}{R}_{c}\overline{\psi }$ $G{M}_{c}^{1/3}{R}_{c}=4.5×{10}^{27}\text{ }\text{ }{\text{m}}^{4}\cdot {\text{kg}}^{-2/3}\cdot {\text{s}}^{-2}$ $t=\sqrt{\frac{{R}_{c}^{3}}{G{M}_{c}}}\overline{t}$ ${t}_{s}=\sqrt{\frac{{R}_{c}^{3}}{G{M}_{c}}}=6.8×{10}^{16}\text{ }\text{ }\text{s}$ $\frac{\partial }{\partial t}=\sqrt{\frac{G{M}_{c}}{{R}_{c}^{3}}}\frac{\partial }{\partial \overline{t}}$ $v=\frac{\partial r}{\partial t}=\sqrt{\frac{G{M}_{c}}{{R}_{c}}}\overline{v}$ $\sqrt{\frac{G{M}_{c}}{{R}_{c}}}=9.9×{10}^{5}\text{ }\text{ }\text{m}\cdot {\text{s}}^{-1}$ $q={\left(\frac{G{M}_{c}}{{R}_{c}}\right)}^{3/2}\frac{1}{{R}_{c}}\overline{q}$ ${\left(\frac{G{M}_{c}}{{R}_{c}}\right)}^{3/2}\frac{1}{{R}_{c}}=1.4×{10}^{-5}\text{ }\text{ }\text{j}\cdot {\text{kg}}^{-1}\cdot {\text{s}}^{-1}$ $T=\mu \frac{{m}_{proton}}{{k}_{B}}\frac{G{M}_{c}}{{R}_{c}}\overline{T}$ $\frac{{m}_{proton}}{{k}_{B}}\frac{G{M}_{c}}{{R}_{c}}=1.2×{10}^{8}\text{ }\text{ }\text{K}$ $\begin{array}{l}\text{ }\text{\hspace{0.17em}}\text{​}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}1\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-\text{H}\\ \mu =\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}2\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-{\text{H}}_{2}\\ \text{ }\text{\hspace{0.17em}}\text{​}\text{\hspace{0.17em}}\text{\hspace{0.17em}}1/2\text{\hspace{0.17em}}\text{\hspace{0.17em}}-{\text{H}}^{+},{\text{e}}^{-}\end{array}$ ${v}_{s}=\sqrt{\gamma \frac{G{M}_{c}}{{R}_{c}}}{\overline{v}}_{s}$ $\sqrt{\gamma \frac{G{M}_{c}}{{R}_{c}}}=1.3×{10}^{6}\text{ }\text{ }\text{m}\cdot {\text{s}}^{-1}$