Algorithm 1. Hierarchical Fuzzy C-Means Clustering |
Input: Initialize list of data with size n, threshold t, number of cluster c Output: List of c cluster centers 1. for c = 1 to n 2. List candidateList = 3. Apply Silhouette Width on candidateList, give value q 4. end for 5. Choose optimal q, List finallist = candidateList 6. for each cluster set s in finallist 7. int clusterSize = s.size() 8. if(clusterSize > t) 9. n = c 10. do 1-18 11. end if 12. else if All clusterSize <= t 13. return C 14. end else if 15. else if All clusterSize doesn’t change 16. return C 17. end else if 18. end for |