Id

AC Symbols

Reducementals

Architecture

1

U 1 R 1 ( U 1 . U 1 )

{ 1 5 2 } { ( n + 3 n 1 ) ( n + 2 n 2 ) ( n + 1 n 3 ) }

δ = 4 ; ω = 3 ; g = 0

2

U 2 R 1 ( U 1 . U 1 )

{ 1 9 9 1 } { ( n + 4 n 1 ) ( n + 3 n 2 ) ( n + 2 n 3 ) ( n + 1 n 4 ) }

δ = 5 ; ω = 4 ; g = 0

3

U 3 R 1 ( U 1 . U 1 )

{ 1 13 21 5 } { ( n + 5 n 1 ) ( n + 4 n 2 ) ( n + 3 n 3 ) ( n + 2 n 4 ) }

δ = 6 ; ω = 4 ; g = 0

4

U 4 R 1 ( U 1 . U 1 )

{ 1 17 38 14 } { ( n + 6 n 1 ) ( n + 5 n 2 ) ( n + 4 n 3 ) ( n + 3 n 4 ) }

δ = 7 ; ω = 4 ; g = 0

5

U 1 R2 ( U 1 . U 1 )

{ 1 6 3 } { ( n + 4 n 1 ) ( n + 3 n 2 ) ( n + 2 n 3 ) }

δ = 5 ; ω = 3 ; g = 0

6

U 2 R2 ( U 1 . U 1 )

{ 1 11 15 3 } { ( n + 5 n 1 ) ( n + 4 n 2 ) ( n + 3 n 3 ) ( n + 2 n 4 ) }

δ = 4 ; ω = 4 ; g = 0

7

U 3 R2 ( U 1 . U 1 )

{ 1 16 36 16 1 } { ( n + 6 n 1 ) ( n + 5 n 2 ) ( n + 4 n 3 ) ( n + 3 n 4 ) ( n + 2 n 5 ) }

δ = 7 ; ω = 5 ; g = 0

8

U 4 R2 ( U 1 . U 1 )

{ 1 21 66 46 6 } { ( n + 7 n 1 ) ( n + 6 n 2 ) ( n + 5 n 3 ) ( n + 4 n 4 ) ( n + 3 n 5 ) }

δ = 8 ; ω = 5 ; g = 0