Id Notation Conducement 1 $\stackrel{2/3/o=1}{\overbrace{\left\{\mathbb{S}\right\}}}$ $\left\{\begin{array}{cc}1& \begin{array}{cc}7& \begin{array}{cc}19& \begin{array}{cc}37& \begin{array}{cc}61& \cdots \end{array}\end{array}\end{array}\end{array}\end{array}\right\}\oplus \left\{\begin{array}{cc}1& \begin{array}{cc}\begin{array}{c}1\\ 1\end{array}& \begin{array}{cc}\begin{array}{c}1\\ \begin{array}{c}1\\ 1\end{array}\end{array}& \cdots \end{array}\end{array}\end{array}\right\}=\left\{\begin{array}{cc}1& \begin{array}{cc}8& \begin{array}{cc}27& \begin{array}{cc}64& \begin{array}{cc}125& \cdots \end{array}\end{array}\end{array}\end{array}\end{array}\right\}$ 2 $\stackrel{1/2}{\overbrace{\left\{\mathbb{S}\right\}}}$ $\left\{\begin{array}{cc}1& \begin{array}{cc}6& \begin{array}{cc}12& \begin{array}{cc}18& \begin{array}{cc}24& \cdots \end{array}\end{array}\end{array}\end{array}\end{array}\right\}\oplus \left\{\begin{array}{cc}1& \begin{array}{cc}\begin{array}{c}1\\ 1\end{array}& \begin{array}{cc}\begin{array}{c}1\\ \begin{array}{c}1\\ 1\end{array}\end{array}& \cdots \end{array}\end{array}\end{array}\right\}=\left\{\begin{array}{cc}1& \begin{array}{cc}7& \begin{array}{cc}19& \begin{array}{cc}37& \begin{array}{cc}61& \cdots \end{array}\end{array}\end{array}\end{array}\end{array}\right\}$ 3 $\stackrel{0/1}{\overbrace{\left\{\mathbb{S}\right\}}}$ $\left\{\begin{array}{cc}1& \begin{array}{cc}5& \begin{array}{cc}6& \begin{array}{cc}6& \begin{array}{cc}6& \cdots \end{array}\end{array}\end{array}\end{array}\end{array}\right\}\oplus \left\{\begin{array}{cc}1& \begin{array}{cc}\begin{array}{c}1\\ 1\end{array}& \begin{array}{cc}\begin{array}{c}1\\ \begin{array}{c}1\\ 1\end{array}\end{array}& \cdots \end{array}\end{array}\end{array}\right\}=\left\{\begin{array}{cc}1& \begin{array}{cc}6& \begin{array}{cc}12& \begin{array}{cc}18& \begin{array}{cc}24& \cdots \end{array}\end{array}\end{array}\end{array}\end{array}\right\}$ 4 $\stackrel{\mathrm{ker}/0}{\overbrace{\left\{\mathbb{S}\right\}}}$ $\left\{\begin{array}{cc}1& \begin{array}{cc}4& \begin{array}{cc}1& \begin{array}{cc}0& \cdots \end{array}\end{array}\end{array}\end{array}\right\}\oplus \left\{\begin{array}{cc}1& \begin{array}{cc}\begin{array}{c}1\\ 1\end{array}& \begin{array}{cc}\begin{array}{c}1\\ \begin{array}{c}1\\ 1\end{array}\end{array}& \cdots \end{array}\end{array}\end{array}\right\}=\left\{\begin{array}{cc}1& \begin{array}{cc}5& \begin{array}{cc}6& \begin{array}{cc}6& \begin{array}{cc}6& \cdots \end{array}\end{array}\end{array}\end{array}\end{array}\right\}$ 5 $\stackrel{0/\mathrm{ker}}{\overbrace{\left\{\mathbb{S}\right\}}}$ $\left\{\begin{array}{cc}1& \begin{array}{cc}3& \begin{array}{cc}-3& \begin{array}{cc}-1& \begin{array}{cc}0& \cdots \end{array}\end{array}\end{array}\end{array}\end{array}\right\}\oplus \left\{\begin{array}{cc}1& \begin{array}{cc}\begin{array}{c}1\\ 1\end{array}& \begin{array}{cc}\begin{array}{c}1\\ \begin{array}{c}1\\ 1\end{array}\end{array}& \cdots \end{array}\end{array}\end{array}\right\}=\left\{\begin{array}{cc}1& \begin{array}{cc}4& \begin{array}{cc}1& \begin{array}{cc}0& \cdots \end{array}\end{array}\end{array}\end{array}\right\}$ 6 $\stackrel{0/-1}{\overbrace{\left\{\mathbb{S}\right\}}}$ $\left\{\begin{array}{cc}1& \begin{array}{cc}2& \begin{array}{cc}-6& \begin{array}{cc}2& \begin{array}{cc}1& 0\end{array}\end{array}\end{array}\end{array}\end{array}\right\}\oplus \left\{\begin{array}{cc}1& \begin{array}{cc}\begin{array}{c}1\\ 1\end{array}& \begin{array}{cc}\begin{array}{c}1\\ \begin{array}{c}1\\ 1\end{array}\end{array}& \cdots \end{array}\end{array}\end{array}\right\}=\left\{\begin{array}{cc}1& \begin{array}{cc}3& \begin{array}{cc}-3& \begin{array}{cc}-1& 0\end{array}\end{array}\end{array}\end{array}\right\}$ 7 $\stackrel{\mathrm{ker}/3}{\overbrace{\left\{\mathbb{S}\right\}}}$ $=\left\{\begin{array}{cc}1& \begin{array}{cc}8& \begin{array}{cc}27& \begin{array}{cc}64& \cdots \end{array}\end{array}\end{array}\end{array}\right\}$ 8 $\stackrel{k/3/o=2}{\overbrace{\left\{\mathbb{S}\right\}}}$ $=\left\{\begin{array}{cc}1& \begin{array}{cc}8& \begin{array}{cc}27& \begin{array}{cc}64& \cdots \end{array}\end{array}\end{array}\end{array}\right\}$