S/N Model Name Model Equation Reference 1. Newton/Lewis $MR=\mathrm{exp}\left(-kt\right)$ [59] 2. Page $MR=\mathrm{exp}\left(-k{t}^{n}\right)$ [55] 3. Modified Page $MR=\mathrm{exp}\left[{\left(-kt\right)}^{n}\right]$ [60] 4. Modified Page II $MR=\mathrm{exp}\left(-k{\left(\frac{t}{{L}^{2}}\right)}^{n}\right)$ [61] [62] 5 Modified Page III $MR=k\mathrm{exp}{\left(-\frac{t}{{d}^{2}}\right)}^{n}$ [63] 6. Henderson and Pabis $MR=a\mathrm{exp}\left(-kt\right)$ [64] 7. Logarithmic $MR=a\mathrm{exp}\left(-kt\right)+c$ [65] 8. Two Term $MR=a\mathrm{exp}\left(-{k}_{0}t\right)+b\mathrm{exp}\left(-{k}_{1}t\right)$ [66] 9. Two Term Exponential $MR=a\mathrm{exp}\left(-kt\right)+\left(1-a\right)\mathrm{exp}\left(kat\right)$ [60] 10. Wang and Singh $MR={M}_{O}+at+b{t}^{2}$ $MR=1+at+b{t}^{2}$ [67] [68] 11. Singh et al. $MR=\mathrm{exp}\left(-kt\right)-akt$ [4] 12. Approximation of Diffusion (or Diffusion Approach) $MR=a\mathrm{exp}\left(-kt\right)+\left(1-a\right)\mathrm{exp}\left(-kbt\right)$ [65] 13. Verma et al. $MR=a\mathrm{exp}\left(-kt\right)+\left(1-a\right)\mathrm{exp}\left(-gbt\right)$ [69] 14. Modified Henderson and Pabis $MR=a\mathrm{exp}\left(-kt\right)+b\mathrm{exp}\left(-gt\right)+c\mathrm{exp}\left(-ht\right)$ [50] 15. Aghabashlo Model $MR=\mathrm{exp}-\left(\frac{{k}_{1}t}{1+{k}_{0}t}\right)$ [70] 16. Ademiluyi Modified $MR=a\mathrm{exp}-{\left(kt\right)}^{n}$ [71] 17. Weibull $MR=\mathrm{exp}\left(-{\left(\frac{t}{a}\right)}^{b}\right)$ [72] 18. Midilli et al. $MR=a\mathrm{exp}\left(-k{t}^{n}\right)+bt$ [61] 19. Peleg Model $M-{M}_{O}=-\frac{1}{{k}_{1}+t{k}_{2}},\frac{\text{d}m}{\text{d}t}=R=-\frac{{k}_{1}}{{k}_{1}+t{k}_{2}}$ [32] 20. Silva et al. $MR=\mathrm{exp}\left(-at-b{t}^{\frac{1}{2}}\right)$ [73] 21 Thompson $t=aIn\left(MR\right)+b{\left[In\left(MR\right)\right]}^{2}$ [74] 22. Geometric $MR=a{t}^{-n}$ [75] 23. Combined Two Term and Page $MR=a\mathrm{exp}\left(-k{t}^{n}\right)+b\mathrm{exp}\left(-h{t}^{n}\right)$ [76]