${\mathcal{G}}_{6}\cong {\mathcal{G}}_{2}\oplus {\mathcal{G}}_{3}$ ${\mathbb{A}}_{1}$ ${\mathbb{A}}_{2}$ ${\mathbb{A}}_{3}$ $2{\mathcal{G}}_{3}={\mathbb{A}}_{1}\cap {\mathbb{A}}_{2}\cap {\mathbb{A}}_{3}$ ${\mathbb{B}}_{1}$ $\mathfrak{L}\left(0,1\right)=\Gamma \left(-1,-1\right)$ $\mathfrak{L}\left(3,2\right)=\Gamma \left(0,-1\right)$ $\mathfrak{L}\left(3,1\right)=\Gamma \left(1,-1\right)$ $\mathfrak{L}\left(0,2\right)=\Gamma \left(-1\right)$ ${\mathbb{B}}_{2}$ $\mathfrak{L}\left(2,3\right)=\Gamma \left(-1,0\right)$ $\mathfrak{L}\left(1,0\right)=\Gamma \left(0,0\right)$ $\mathfrak{L}\left(1,3\right)=\Gamma \left(1,0\right)$ $\mathfrak{L}\left(2,0\right)=\Gamma \left(0\right)$ ${\mathbb{B}}_{3}$ $\mathfrak{L}\left(2,5\right)=\Gamma \left(-1,2\right)$ $\mathfrak{L}\left(1,4\right)=\Gamma \left(0,2\right)$ , $\mathfrak{L}\left(1,1\right)=\Gamma \left(1,2\right)$ $\mathfrak{L}\left(2,2\right)=\Gamma \left(1\right)$ ${\mathbb{B}}_{4}$ $\mathfrak{L}\left(2,1\right)=\Gamma \left(-1,1\right)$ $\mathfrak{L}\left(1,2\right)=\Gamma \left(0,1\right)$ $\mathfrak{L}\left(1,5\right)=\Gamma \left(1,1\right)$ $\mathfrak{L}\left(2,4\right)=\Gamma \left(2\right)$ $3{\mathcal{G}}_{2}={\mathbb{B}}_{1}\cap {\mathbb{B}}_{2}\cap {\mathbb{B}}_{3}\cap {\mathbb{B}}_{4}$ $\mathfrak{L}\left(0,3\right)=\Gamma \left(-1\right)$ $\mathfrak{L}\left(3,0\right)=\Gamma \left(0\right)$ $\mathfrak{L}\left(3,3\right)=\Gamma \left(1\right)$