Parameters Isotherms Non-Linear Forms Equation Number References Two Langmuir ${Q}_{e}=\frac{{Q}_{m}{K}_{L}{C}_{e}}{1+{K}_{L}{C}_{e}}$ (13) [27] and ${R}_{L}=\frac{1}{1+{K}_{L}{C}_{0}}$ (14) Freundlich ${Q}_{e}={K}_{f}{C}_{e}^{1/n}$ (15) [28] Temkin ${Q}_{e}=\frac{RT}{\Delta Q}\mathrm{ln}\left(A{C}_{e}\right)$ (16) [29] Dubinin-Radushkevich ${Q}_{e}={Q}_{m}\mathrm{exp}\left(-\beta {\epsilon }^{2}\right)$ Math_21# (17) [30] Elovich $\frac{{Q}_{e}}{{Q}_{m}}={K}_{E}{C}_{e}\mathrm{exp}\left(-\frac{{Q}_{e}}{{Q}_{m}}\right)$ (18) [31] Jovanovic ${Q}_{e}={Q}_{m}\left(1-{\text{e}}^{-{K}_{J}{C}_{e}}\right)$ (19) [32] Kiselev ${K}_{1k}{C}_{e}=\frac{{\theta }_{k}}{\left(1-{\theta }_{k}\right)\left(1+{K}_{n}{\theta }_{k}\right)}$ ${\theta }_{k}={Q}_{e}/{Q}_{m}$ (20) [3] Halsey ${Q}_{e}=\mathrm{exp}\left(\frac{\mathrm{ln}{K}_{H}-\mathrm{ln}{C}_{e}}{{n}_{H}}\right)$ (21) [3] Three Redlich-Peterson ${Q}_{e}=\frac{{K}_{RP}{C}_{e}}{1+{A}_{RP}{C}_{e}^{g}}$ (22) [3] Hill ${Q}_{e}=\frac{{Q}_{SH}{C}_{e}^{nH}}{{K}_{D}+{C}_{e}^{nH}}$ (23) [33] Radke-Prausnitz ${Q}_{e}=\frac{{Q}_{mRP}{K}_{RP}{C}_{e}}{{\left(1+{K}_{RP}{C}_{e}\right)}^{mRP}}$ (24) [3] Langmuir-Freundlich ${Q}_{e}=\frac{{Q}_{mLF}{\left({K}_{LF}{C}_{e}\right)}^{{M}_{LF}}}{1+{\left({K}_{LF}{C}_{e}\right)}^{{M}_{LF}}}$ (25) [33] Toth ${Q}_{e}=\frac{{Q}_{m}{K}_{T}{C}_{e}}{{\left[1+{\left({K}_{T}{C}_{e}\right)}^{n}\right]}^{1/n}}$ (26) [33] Jossens ${C}_{e}=\frac{{Q}_{e}}{H}\mathrm{exp}\left(F{Q}_{e}^{p}\right)$ (27) [3] Fritz-Schlunder III ${Q}_{e}=\frac{{Q}_{mFS}{K}_{FS}{C}_{e}}{1+{Q}_{mFS}{C}_{e}^{mFS}}$ (28) [9] Four Fritz-Schlunder IV ${Q}_{e}=\frac{A{C}_{e}^{\alpha }}{1+B{C}_{e}^{\beta }}$ With α and β ≤ 1 (29) [3] [34] Baudu ${Q}_{e}=\frac{{Q}_{mo}{b}_{o}{C}_{e}^{\left(1+x+y\right)}}{1+{b}_{o}{C}_{e}^{\left(1+x\right)}}$ with $\left(1+x+y\right)$ and $\left(1+x\right)<1$ (30) [3] [34] Five Fritz-Schlunder V ${Q}_{e}=\frac{{Q}_{mFS}{K}_{1}{C}_{e}^{{m}_{1}}}{1+{K}_{2}{C}_{e}^{{m}_{2}}}$ with m1 and m2 ≤ 1 (31) [3] [33]