Function ${F}_{1}\left(x\right)=\sum _{i=1}^{n}\text{ }\text{ }{x}_{i}^{2}$ ${F}_{2}\left(x\right)=\sum _{i=1}^{n}|{x}_{i}|+\prod _{i=1}^{n}|{x}_{i}|$ ${F}_{3}\left(x\right)=\sum _{i=1}^{n}{\left({\sum }_{j-1}^{i}{x}_{i}\right)}^{2}$ ${F}_{4}\left(x\right)={\mathrm{max}}_{i}\left\{|{x}_{i}|,1\le i\le n\right\}$ ${F}_{5}\left(x\right)=\sum _{i=1}^{n}|{x}_{i}^{2}-10\mathrm{cos}\left(2\pi {x}_{i}\right)+10|$ ${F}_{6}\left(x\right)=-20\mathrm{exp}\left(-0.2\sqrt{\frac{1}{n}\sum _{i=1}^{n}\text{ }\text{ }{x}_{i}^{2}}\right)-\mathrm{exp}\left(\frac{1}{n}\sum _{i=1}^{n}\mathrm{cos}\left(2\pi {x}_{i}\right)\right)+20+e$ ${F}_{7}\left(x\right)=\frac{1}{4000}\sum _{i=1}^{n}\text{ }\text{ }{x}_{i}^{2}-\prod _{i=1}^{n}\mathrm{cos}\left(\frac{{x}_{i}}{\sqrt{i}}\right)-1$ ${F}_{8}\left(x\right)=\frac{\pi }{n}\left(10\mathrm{sin}{\left(\pi {y}_{i}-1\right)}^{2}\left[1+10{\mathrm{sin}}^{2}\left(\pi {y}_{i+1}\right)\right]+{\left({y}_{n-1}\right)}^{2}+\sum _{i=1}^{n}\text{ }\text{ }U\left({x}_{i},10,100,4\right)\right)$ ${y}_{i}=1+\frac{{X}_{i+1}}{4}u\left({x}_{i},a,k,m\right)=\left\{\begin{array}{l}k{\left({x}_{i}-a\right)}^{m}{x}_{i}>0\\ o-a<{x}_{i} ${F}_{9}\left(x\right)=\sum _{i=1}^{11}{|{a}_{i}-\frac{{x}_{i}\left({b}_{i}^{2}+{b}_{i}{x}_{2}\right)}{{b}_{i}^{2}+{b}_{i}{x}_{2}+{x}_{4}}|}^{2}$ ${F}_{10}\left(x\right)=4{x}_{i}^{2}-2.1{x}_{1}^{4}+\frac{1}{3}{x}_{1}^{6}+{x}_{1}{x}_{2}-4{x}_{2}^{2}+4{x}_{2}^{4}$