1873 modified Newton:

Collision space-time:

Mass

M = λ ¯ M 1 c ( kg )

M ¯ = l p c l p λ ¯ M (collision-time)

Energy

E = c λ ¯ M ( kg )

E ¯ = l p l p λ ¯ M (collision-length)

Non observable (contains GMm)

Gravitational constant

G , ( G = l p 2 c 3 )

c 3

Gravity force

F N = G M m R 2 ( kg m s 2 )

F ¯ N = c 3 M ¯ m ¯ R 2 ( m s 1 )

Observable predictions, identical for the two methods: (contains only GM)

Gravity acceleration

g = G M R 2 = c 2 R 2 l p 2 λ ¯ M

g = c 3 M ¯ R 2 = c 2 R 2 l p 2 λ ¯ M

Orbital velocity

v o = G M R = c l p 2 R λ ¯ M

v o = c 3 M ¯ R = c l p 2 R λ ¯ M

Time dilation

T R = T f 1 2 G M R 2 / c 2 = T f 1 2 l p 2 R λ ¯ M

T R = T f 1 2 c 3 M ¯ R 2 / c 2 = T f 1 2 l p 2 R λ ¯ M

Gravitational redshift

z = 1 2 G M R 1 c 2 1 2 G M R 2 c 2 1 = 1 2 l p 2 R 1 λ ¯ M 1 2 l p 2 R 2 λ ¯ M 1

z = 1 2 c 3 M ¯ R 1 c 2 1 2 c 3 M ¯ R 2 c 2 1 = 1 2 l p 2 R 1 λ ¯ M 1 2 l p 2 R 2 λ ¯ M 1

Gravitational redshift

z ( r ) G M c 2 R = l p 2 R λ ¯ M

z ( r ) c 3 M ¯ c 2 R = l p 2 R λ ¯ M

Gravitational deflection (GR)

δ = 4 G M c 2 R = 4 R l p 2 λ ¯ M

δ = 4 c 3 M ¯ c 2 R = 4 R l p 2 λ ¯ M

Advance of perihelion

6 π G M a ( 1 e 2 ) c 2 = 6 π a ( 1 e 2 ) l p 2 λ ¯ M

6 π c 3 M ¯ a ( 1 e 2 ) c 2 = 6 π a ( 1 e 2 ) l p 2 λ ¯ M

Indirectly/“hypothetical” observable predictions: (contains only GM)

Escape velocity

v e = 2 G M R = c 2 l p 2 R λ ¯ M

v e = 2 c 3 M ¯ R = c 2 l p 2 R λ ¯ M

Schwarzschild radius

r s = 2 G M c 2 = 2 l p 2 λ ¯ M

r s = 2 c 3 M ¯ c 2 = 2 l p 2 λ ¯ M

Gravitational parameter

μ = G M = c 2 l p 2 λ ¯ M

μ = c 3 M ¯ = c 2 l p 2 λ ¯ M

Two body problem

μ = G ( M 1 + M 2 ) = c 2 l p 2 λ ¯ 1 + c 2 l p 2 λ ¯ 1

c 3 ( M ¯ 1 + M ¯ 2 ) = c 2 l p 2 λ ¯ 1 + c 2 l p 2 λ ¯ 2